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Predicting and controlling the behavior of oscillatory combustion systems requires an
understanding of the interactions between the periodic combustion and acoustic processes.
Due to the complexity of these interactions, a number of past analyses of these problems
have assumed a &&concentrated'', in"nitely thin, combustion region. Although such
treatments of the combustion process as a lumped element are attractive because of their
simplicity, this paper shows that they may produce signi"cant errors. It is further shown that
such errors can be minimized by use of multipole expansion techniques similar to those used
in acoustic radiation problems. Speci"cally, this paper develops a formalism for describing
the combustion region as a series of lumped parameters whose magnitudes are proportional
to ascending powers of the ratio ¸/j, where ¸ and j are the length of the combustion region
and the acoustic wavelength respectively. In the limit as ¸/j goes to zero, only the "rst term
of this expansion is signi"cant and the &&concentrated'' combustion approximation is
recovered. As ¸/j increases, additional parameters (e.g., higher order terms) are needed to
accurately describe the e!ect of the combustion process on the acoustic oscillations and
must be included in the analysis. The paper closes with example calculations showing that
accuracy in modelling combustion}acoustics interactions can be signi"cantly increased by
implementation of the developed technique.
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1. INTRODUCTION

Predicting and controlling the behavior of systems undergoing oscillatory combustion
requires an understanding of the interactions between the periodic combustion and acoustic
processes. This generally requires determining the characteristics of the unsteady
combustion process and its e!ect on the acoustic "eld by modelling or measurements. Prior
e!orts at modelling these interactions have either assumed that the combustion zone is
in"nitely thin and can be treated as a lumped heat source (e.g., see references [1}8]) or
modelled the spatial dependence of the combustion process heat release throughout the
combustion region (e.g., see reference [9]). In the latter case, measured data was sometimes
used to describe the distributed combustion region [9].

The lumped parameter approach has been used extensively because it only requires
modelling a single quantity that contains all relevant information about the combustion
process. However, while it can be shown that such an approach is rigorously correct in the
limit as the combustion zone width, ¸, approaches zero, it is unclear at what point (in terms
of the ratio of the combustion zone thickness and the wavelength, i.e., ¸/j) this
approximation fails for "nite-sized combustion regions. It will be shown in this paper that
0022-460X/00/330405#10 $35.00/0 ( 2000 Academic Press
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the errors in this approximation become signi"cant even when ¸/j is still quite small.
On the other hand, while modelling the spatial dependence of the combustion zone
appears to be the more desirable approach, in practice it is very di$cult (if not impossible)
to accurately model or measure the spatial distribution of the complex combustion
process.

This paper develops a generalization of the lumped parameter approach that is
applicable to a much wider class of unsteady combustion problems, while avoiding the
di$culties associated with modelling a distributed combustion region. Clearly, the errors
produced by the lumped parameter approach increase as ¸/j increases because the coupling
between the acoustic and combustion processes can no longer be e!ectively described by
a single parameter. This suggests, however, that the accuracy of the lumped parameter
approach could be increased by included additional parameters to describe the unsteady
combustion process.

The rest of this paper describes the results of a study that developed such an approach. Its
principal result is a formalism for &&breaking'' a compact combustion zone into fundamental
&&building blocks'', analogous to the multiple expansions used in classical acoustics [10].
These &&buildings blocks'' are a series of lumped elements whose e!ect on the acoustic "eld
are related to ascending powers of ¸/j. In the limit as this ratio approaches zero, only the
"rst term of this expansion is signi"cant and the solution provided by the single lumped
parameter approach is recovered. As this ratio increases, terms proportional to higher
powers of ¸/j become signi"cant in describing the e!ect of the combustion process on the
unsteady #ow "eld and must be included in the analysis.

This decomposition has a number of applications. First, it allows for a clear
interpretation of the dominant characteristics of the distributed combustion process
insofar as it a!ects the acoustic "eld. Second, it shows what simpli"cations can be made to
model distributed combustion process}acoustic interactions to a given order of accuracy.
Finally, it suggests measurements that can be made to obtain information about the
unsteady combustion system, such as the net acoustic energy #ux out of the combustion
zone.

2. BACKGROUND

Sound radiation in classical acoustics is often described in terms of fundamental sources,
such as a pulsating sphere (i.e., a &&monopole''), and from an oscillating sphere (i.e.,
a &&dipole''). Such fundamental radiators serve as building blocks for understanding and
classifying the directional and power transmission characteristics of more complex
radiators. It is also well known [10] that if the characteristic dimension of an arbitrary
body, ¸, is much smaller than the wavelength, its far"eld radiation can be decomposed into
that generated by a number of these fundamental sources. The goal of this investigation is to
develop an analogous formulation for application to a ducted unsteady combustion
process. The approach developed in this paper follows from the observation that, for
su$ciently low-frequency oscillations, only the plane wave modes in a duct can propagate
while the transverse modes are evanescent and decay rapidly. Thus, the acoustic "eld in the
duct is nearly one dimensional except in a region in and near the #ame (see Figure 1).
A number of studies (e.g., references [1, 2, 5, 6]) have utilized this fact to derive conservation
conditions relating the one-dimensional acoustic "eld variables across a multi-dimensional
#ame region. The expressions developed in these studies are equivalent to the
Rankine}Hugoniot conditions [11], and are exact only for an in"nitely thin #ame. For
example, it has been shown [2] that for an in"nitely thin #ame in a duct without mean #ow
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of constant area, A, that these conditions take the form
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where subscripts 1 and 2 denote the value of the variables on the up- and downstream sides
of the #ame region, respectively, and
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Outside of the combustion region, the propagation of acoustic waves can generally be
modelled using one-dimensional acoustics, and equations (1, 2) provide the matching
conditions that couple these one-dimensional oscillations across a complex combustion
region (see Figure 1), with the aid of the lumped parameter Q@. While equations (1, 2)
describe this coupling in terms of a single parameter, this paper seeks to increase the
accuracy of this expression by including additional (higher order) parameters that will allow
for a description of the characteristics of the unsteady combustion region to greater
accuracy (i.e., a generalization of the Rankine}Hugoniot relations to unsteady domains of
"nite extent). To illustrate the solution approach, it is convenient to work with the following
acoustic energy and momentum equations where it is assumed that the oscillations have an
e~*ut time dependence and that mean #ow a!ects are negligible (i.e., the Mach number of the
mean #ow is very smalls):
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The subsequent derivation will also assume a constant mean density, but these results can
be generalized to a region of arbitrarily varying density.

Integrating equations (4, 5) over the volume of the combustion region and applying the
divergence theorem to the resulting integrals yields the following equations:
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In their present form, equations (6, 7) are valid for any region, but not very useful for our
purposes. These equations are greatly simpli"ed by evaluating the surface integrals at
locations up and downstream of the #ame where the acoustic "eld is one dimensional (see
Figure 1). If it is assumed that the #ame region is in"nitely thin, the last terms in equations
(6, 7) become zero and the resulting equations are equivalent to equations (1, 2). However,
since the #ame zone has a "nite thickness ¸, these terms are not identically zero. Rather,
they are O(k¸) smaller than the remaining terms in equations (6, 7) (because they are
multiplied by the angular frequency u"kc and are integrated over the volume <&A¸).

Evaluating these O(k¸) volume integral terms in their present form is di$cult (or
impossible), however, because it requires knowledge of the acoustic "eld in the combustion
-As pointed out by a reviewer, these neglected mean #ow e!ects have a signi"cant in#uence upon convected
entropy #uctuations (also excited by the combustion process), even in the limit of vanishing Mach number. These
entropy disturbances a!ect the acoustic pressure and velocity matching conditions only in high Mach number
#ows (e.g., through terms like o@u2 in the momentum equation), however, and are not further discussed in the
ensuing analysis.



Figure 1. Schematic diagram of ducted combustion system interacting with acoustic disturbances.
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region. Consequently, it would be preferable to recast these volume terms into surface
integrals because, as previously discussed, it is much easier to determine the
one-dimensional acoustic quantities on the up- and downstream surfaces of the combustion
zone (see Figure 1).

The following paragraphs will show that these volume integral terms can be evaluated in
terms of moments of acoustic quantities over the surface of the combustion region and
&&higher order'' combustion process parameters. To obtain these expressions, take the
spatial moments of equations (4, 5) (i.e., multiply by the spatial co-ordinate, x), integrate the
resulting expressions over the volume of the combustion zone, and integrate by parts to
obtain
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Setting i"j in equation (9) and summing over the indices i"1,2 , N yield
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Examination of equations (8) and (10) shows that each contains one of the volume terms
from equations (6, 7) in terms of surface integrals and a new volume term that is of O(k¸)2.
Thus, equation (10) can be used to solve for the volume integral term of the acoustic
pressure
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This volume integral of the pressure can be substituted into equation (6) to obtain
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If the O(k¸)2 volume integral term is neglected, equation (12) is an acoustic energy
equation for the combustion region that is accurate to O(k¸)2, as opposed to the O(k¸)
accuracy of equation (2). To produce a correspondingly accurate momentum equation,
equation (8) is substituted into equation (7) to obtain
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To further increase the accuracy of the derived conservation equations (i.e., equations
(12, 13)) from O(k¸)2 to O(k¸)3, it is necessary to evaluate the O(k¸)2 volume integrals in
these equations (e.g., the term iu/N(!iuo:::

V
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d<) in equation (12)). This is

accomplished by taking the second moment of equations (4) and (5) and integrating by
parts. The resulting equations will each contain one of the volume terms from equations
(12, 13) in terms of surface integrals, and a new volume term that is of O(k¸)3. Substituting
these expressions into equations (12, 13) produces the following expressions that are
accurate to O (k¸)3:
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While equations (14, 15) are quite general and may be applied to a variety of problems,
they will now be simpli"ed to problems where the up and downstream surfaces have the
same area, and where the acoustic "elds are one dimensional over these surfaces. De"ning
the origin of the co-ordinate system to be at the midpoint between these two surfaces,
equations (14, 15) become
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where the geometric parameters i
1

and i
2

are given by the following surface integrals over
the regions of integration:
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and the lumped combustion process parameters are given by
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The boundary terms in equations (16, 17), B
1

and B
2
, represent surface integrals from

equations (14, 15) evaluated over any additional surfaces within the combustion volume,
such as those enclosing #ameholding devices or the combustor walls (see Figure 1).

Equations (16, 17) are the principal result of this study. They relate the values of the
one-dimensional acoustic "elds up and downstream of the combustion region to a series of
lumped parameters whose in#uence on the solution diminishes by powers of k¸. For k¸@1,
these equations show, in agreement with the discussion in the Introduction, that all the
information necessary to describe the coupling between the unsteady combustion process
and the acoustic "eld is contained in the quantity Q@. However, as k¸ increases, an accurate
description of this coupling requires a second parameter, Q@

1
, with in#uence on the solution

of O(k¸). In general, a description of this coupling accurate to O(k¸)n requires specifying
n lumped combustion process parameters. The examples in the following section show O(1),
O(k¸) and O (k¸)2 calculations that illustrate this point. However, before proceeding to this
section, two comments on the solution procedure are in order.

First, although this solution procedure could, in principle, be carried out to an arbitrary
order to obtain any speci"ed degree of accuracy, there is a practical limit to its accuracy and
utility. That is, applying it to problems where k¸!O(1), or where a very high degree of
accuracy is desired, may require speci"cation of a large number of parameters, making the
complexity of the developed procedure equivalent to that associated with modelling
a distributed combustion region. Also, although the fact that these lumped parameters are
integrated quantities suggests that their value should be relatively insensitive to errors in the
description of the combustion process heat addition, q@ (since the local details are averaged
out), the higher order terms will be increasingly more sensitive to errors. That is, lumped
parameters containing terms of the form (x)nq@ will be more sensitive to errors than terms
like (x)n~1q@. Thus, in the solution of practical problems, a point will be reached where the
accuracy of the solution will not increase by including higher order corrections. For
example, the accuracy of the solution may be increased by adding the O(k¸) correction, but
may be una!ected by including higher order terms. An example in the following section will
illustrate this point.

Second, it should be noted that although detailed information about the combustion
process is not required in this procedure, the solution does not provide any information
about the values of the acoustic variables within the combustion region. That is,
information is only obtained about the acoustic quantities on the surface of the region.
Thus, a slightly di!erent procedure than the one outlined here must be applied to problems
where the combustion process is assumed to be a function of acoustic quantities in the
combustion region, as opposed to being known (e.g., q@"Rp@#Sv@ as opposed to q@"f (x),
where f (x) is known). To apply the multipole procedure to this problem, the functional
expression for q@ can be inserted into equation (4) and the procedure that resulted in the
derivation of equations (14, 15) should be applied to equations (4, 5). This will produce a set
of relations analogous to equations (14, 15), but without an explicit source term.

3. EXAMPLE CALCULATIONS

In this section, an example problem is solved in order to illustrate the application and
results of the developed approach. Speci"cally, this section will consider a variation of
a problem discussed in reference [2] that applied the "rst order matching conditions in
equations (1, 2) across an in"nitely thin combustion region. By allowing the combustion
region to have "nite width, the advantages of the developed approach will be illustrated by
comparing the errors introduced by the various orders of approximation.
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For simplicity, this section considers a one-dimensional problem (i.e., N"1) in a duct of
length ¸

comb
with a combustion region of length ¸ (see Figure 1). The plane waves

propagating in the duct outside of the combustion region are described by the following
expressions:
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where the subscript n denotes the region of interest. The unknown amplitudes, A
n
and B

n
of

the propagating waves are determined by boundary conditions at both ends of the duct and
matching conditions across the #ame (equations (16, 17)). The boundary conditions used in
these calculations are
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0
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Finally, it is assumed that the spatial distribution of the unsteady heat release within the
combustion zone is given by q@"sin(nx/¸). The exact solution for this problem can be
determined by solving equations (4, 5).

Figure 2 compares the spatial dependence of the exact acoustic pressure with solutions
obtained by the mulipole expansions (i.e., using equations (16, 17) and (20}22)) of di!erent
O(k¸) accuracy when ¸/j"0)02 (i.e., k¸"0)04n) and ¸

comb
/j"0)77. In this example, the

combustion region thickness is small relative to a wavelength and Figure 2 shows that the
acoustic "eld is well described by the O(1) expansion, although the accuracy increases when
the O(k¸) or O(k¸)2 terms are included. To illustrate the errors introduced when ¸/j
increases. Figure 3 compares the exact and approximate solutions when ¸/j"0)08 and
¸
comb

/j"0)77. The "gure shows that signi"cant errors result from the O(1) expansion (e.g.
errors of up to eighty percent), and that these errors signi"cantly decrease as the higher
order terms are included in the matching conditions (e.g., errors of up to 20 and 4 per cent
with the O (k¸) and O(k¸)2 expansions respectively). Since the size of combustion regions in
practical combustors are likely to be closer to (or larger than) that employed in the last
example, this result shows that including higher order terms in calculations may be
necessary to obtain reasonable results.
Figure 2. Plot of the exact and predicted mode shape using multipole expansions for ¸/j"0)02 and
¸
comb

/j"0)77 (**, exact; j, O(1); n, O(k¸), *, O (k¸)2).



Figure 3. Plot of the exact and predicted mode shape using multipole expansions for ¸/j"0)08 and
¸
comb

/j"0)77 (**, exact; j, O(1); n, O(k¸), *, O (k¸)2).
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Figures 2 and 3 were obtained assuming &&perfect knowledge'' of q@. Figure 4 compares the
solutions obtained for the same conditions as in Figure 3, but with a 30 per cent, normally
distributed, random error inserted in q@. The "gure shows that the addition of this error
scarcely e!ects the O(1) calculation, but has larger e!ects on the higher order corrections.
This example emphasizes the increased sensitivity of the higher order corrections to errors
that was discussed in the previous section. It should be pointed out that the relatively minor
e!ect this error has on the predicted "eld emphasizes a point that is the basis for this work:
only global information about the combustion process is required to describe
low-frequency interactions between the combustion process and the acoustic "eld.

Having compared the exact modes shapes with those predicted by the multipole
expansion procedure, the rest of this section considers the errors introduced by the
procedure in calculating the energy added to the acoustic "eld by the combustion process.
The intensity #ux through the boundaries of the combustion zone is given by [10]
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Figure 5 shows the absolute value of the error ( D(I
exact

!I
predicted

)/I
exact

D) introduced by
di!erent orders of the multiple expansion solution. The "gure shows that the error tends to
zero as the width of the combustion zone approaches zero, but increases rapidly with
increasing thickness. It is surprising to note that the error predicted by the standard O(1)
expansion reaches a value of almost 100 per cent when the combustion zone is still only
one-tenth of a wavelength in size. However, accuracy is substantially increased by including
higher order terms.

4. CONCLUSIONS

This paper has developed an approach analogous to the multiple expansions used in
classical acoustics that improves current capabilities for modelling combustion}acoustic
interaction in duct systems. Example calculations demonstrated substantial improvements



Figure 4. Plot of the exact and predicted mode shape using multipole expansions for ¸/j"0)08 and
¸
comb

/j"0)77 with the addition of a 30 per cent, normally distributed, random error to q@ (**, exact; j, O(1); n,
O(k¸), *, O (k¸)2).

Figure 5. Plot of the error ( DI
exact

!I
predicted

)/ I
exact

D ) between the exact and predicted energy #ux out of the
combustion zone for three di!erent orders of approximation (j, O(1); n, O(k¸), *, O (k¸)2).
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(e.g., reduction in errors by a factor of 20) in accuracy in modelling these interactions
without signi"cant increases in model complexity. While this paper has primarily
emphasized the use of this procedure in improving models of unsteady combustion systems,
in closing, several other applications should be pointed out.

One promising application of this technique is to aid the interpretation of experimental
or numerical results. Even as increasing levels of information are becoming available about
the complex processes occurring in unsteady combustion systems through application of
sophisticated experimental techniques and numerical computations, it is often di$cult to
interpret this data, and more importantly, to determine which features in the mass of
information are and are not important. Since decomposing the combustion region into
lumped parameters o!ers a clear interpretation of the dominant characteristics of the
distributed combustion process insofar as it a!ects the acoustic "eld, the multipole
procedure is a convenient tool for such interpretation.
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Second, the multipole approach discussed here can be applied or generalized to a variety
of situations where volumetric information (that may be di$cult to obtain) can be inferred
from surface measurements. For example, the procedure discussed in equations (4}17)
showed how volume integrals of the acoustic pressure or velocity could be approximated as
moments of acoustic quantities over the surface of the volume.
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APPENDIX: NOMENCLATURE

A area
k wave number; 2n/j
¸ length of the combustion region
n unit normal vector
N number of spatial dimensions
p pressure
q volumetric rate of heat release
Q total rate of heat release
x position vector, xe

x
#ye

y
#ze

z
v velocity
< volume

Greek
c ratio of speci"c heats
j acoustic wavelength
o #uid density
u angular frequency
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